Our curriculum is an innovative presentation of BME content in its focus on applications and deep experiential learning for all students. Students first enroll in a core curriculum of shared math, physics, biology, and chemistry fundamentals, as well as distributed engineering courses in preparation for affiliating with the BME major. Unlike most engineering programs, our coursework is “flipped” in that we present the application, opportunity, and challenge landscape first. The more rigorous theoretical, experimental, and design skills are filled in during subsequent courses. We believe this approach primes students to engage with challenging material because they will understand the importance of the practical skills within context.
Our curriculum’s four cornerstone courses capture the application/opportunity space within four concentrations (fields where BME skills add critical value). Students will survey each of these concentrations before choosing one to pursue in more detail. These courses also provide key concepts and skills that every BME graduate needs to have within each of these areas. During the bulk of the major, students will engage in two parallel tracks. All BME students pursue a sequential series of core, multi-scale engineering analysis of human biological systems courses. These laboratory-supported courses articulate engineering processes within molecular, cellular, tissue, and organ system physiology, and empower students to recognize disease mechanisms as occurring across these scales, and engineering solutions that are robust through these scales. Each student will also pursue one of four concentration areas that communicate field-specific concepts, theory, and engineering skills essential for career success. Each concentration culminates in a unique laboratory practicum that trains and enables students to build new technologies specific to their area of BME expertise.
Finally, all BME students come together to pursue a year-long design sequence building solutions to open-ended problems from the biomedical industry and clinic. Each member of a BME design team will gain unique knowledge and training, enabling them to lead and take responsibility for their area of the problem space. This is a critical component for successful BME careers, as industrial design teams seek out individuals with complementary and non-overlapping skills and that can recognize where and how to add value to a product, and then confidently innovate to achieve it. This culminating experience is also an excellent opportunity for students to hone these professional skills before embarking on their careers.