Tissue Engineering and Biomaterials

Cornell Biomedical engineers design biomaterial platforms to recreate tissues for functional replacement therapies, as models of normal and diseased states for basic research, and for use in drug testing. Well-controlled and biocompatible biomaterials are also needed for selective delivery of therapeutic and imaging contrast agents as well as for gene therapy approaches. Critical to the success of Cornell’s tissue engineering and biomaterials efforts is the integration of multidisciplinary expertise in materials science, cell biology, biochemistry, and biomechanics. Center facilities supporting this research include the Cornell Center for Materials Research, Cornell NanoScale Science and Technology Facility, the Nanobiotechnology Center, and the NIH-funded Physical Sciences Oncology Center (Center on the Physics of Cancer Metabolism). Many projects are joint with faculty at Weill Cornell Medicine.

Some specific faculty projects

Prof. Lawrence Bonassar’s lab focuses on the development of anatomically shaped cartilage for applications in musculoskeletal repair. Researchers in the lab use medical imaging data combined with 3D tissue printing and molding technology to generate engineered tissues for replacement of articular and auricular cartilage, meniscus, and intervertebral disc as well as use mechanical conditioning in bioreactors to guide the development of desired microstructure in engineered tissues.

Prof. Jonathan Butcher’s lab creates and uses living 3D culture models of heart valve physiology and disease. He employs engineering principles from developmental biology to drive the differentiation of stem/progenitor cells towards mature cardiac and valvular phenotypes. Dr. Butcher has also pioneered the use of 3D tissue printing to fabricate living heterogeneous soft tissues. He combines tunable, 3D printable hydrogel inks and novel deposition algorithms for precision design and fabrication of patient-specific heterogeneous clinically sized grafts.

(Over)
Prof. Ben Cosgrove’s lab studies how muscle stem cells interpret and process microenvironmental information through signaling networks that govern their cell fate during tissue maintenance and repair. Inspired by these regulatory insights, his lab develops self-assembled and microfabricated biomaterials to engineered muscle-mimetic tissues and enhance muscle stem cell transplantation therapies.

Prof. Claudia Fischbach-Teschl’s lab studies the effect of microenvironmental conditions on the prognosis and treatment of cancer patients. Her lab combines biomaterials, tissue engineering, and microfabrication strategies to develop pathologically relevant culture models for analysis of tumor-mediated angiogenesis, stroma remodeling, and bone metastasis.

Prof. Jan Lammerding’s lab is using a combination of microfabrication, tissue-engineering, decellularization, and stem cell biology to create in vitro models of skeletal and cardiac muscle, with the goal to elucidate how mutations in nuclear envelope proteins such as lamin A/C and emerin cause muscular dystrophies and heart disease.

The group of Prof. David Putnam aims to synthesize functional biomaterials derived from structure represented in the human metabolome. These new biomaterials are designed to either mimic or replace natural tissues or tissue function. Recent work focuses on new lubricants to prevent progression of osteoarthritis and new surgical materials to facilitate fascial closure following abdominal surgery.

BME department faculty
Lawrence Bonassar, lb244@cornell.edu
Jonathan Butcher, jtb47@cornell.edu
Benjamin Cosgrove, bdc68@cornell.edu
Claudia Fischbach-Teschl, cf99@cornell.edu
Jan Lammerding, jan.lammerding@cornell.edu
David Putnam, dap43@cornell.edu
Michael Shuler, MLS50@cornell.edu
Marjolein van der Meulen, mcv3@cornell.edu

Graduate field faculty
Adele Boskey, boskeyA@hss.edu
C.C. Chu, cce62@cornell.edu
Susan Daniel, sd386@cornell.edu
Lara Estroff, lac37@cornell.edu
Delphine Gourdon, dg434@cornell.edu
Brian Kirby, bks88@cornell.edu
Dan Luo, dl79@cornell.edu
Minglin Ma, mm826@cornell.edu
Suzanne Maher, mahers@hss.edu
Chris Ober, cko3@cornell.edu
Matt Paszek, mjp31@cornell.edu
Ankur Singh, as2833@cornell.edu
Abraham Stroock, ads10@cornell.edu
Uli Wiesner, ubw1@cornell.edu
Timothy Wright, wrightt@hss.edu

Representative publications


